4. Banch Spaces.

A Banach Space is a vector space **X** with a norm ||x|| satisfying ||cx|| = |c|||x|| for real or complex scalars c and $||x + y|| \le ||x|| + ||y||$. In addition **X** is complete under the metric d(x, y) = ||x - y||.

Examples. L_p, ℓ_p for $1 \le p \le \infty$. C(X) the space of continuous functions on a compact space X, or $C_b(X)$ the space of bounded continuous functions on X. The norms being $[\int |f(x)|^p d\mu]^{\frac{1}{p}}$ or $[\sum_{n=0}^{\infty} |a_n|^p]^{\frac{1}{p}}$ for $1 \le p < \infty$. On L_{∞} it is the essential supremum and on ℓ_{∞} it is $\sup_n |a_n|$ with $||f|| = \sup_x |f(x)|$ on the space of bounded continuous functions.

Linear Functions. They are linear maps $\Lambda : \mathbf{X} \to R$ or $\mathbf{X} \to C$. Bounded or continuous linear functionals are those that satisfy $|\Lambda(x)| \leq C||x||$. With $||\Lambda|| = \sup_{||x|| \leq 1} |\Lambda(x)|$ as norm the set of linear functionals is a Banach space called the dual \mathbf{X}^* . For p > 1 the dual of L_p is L_q where $q = \frac{p}{p-1}$ with $q = \infty$ when p = 1. But the dual of L_∞ is bigger than L_1 . The second dual is $[\mathbf{X}^*]^*$ and contains \mathbf{X} . but could be bigger. If it is the same \mathbf{X} is said to be reflexive. For $1 , <math>L_p$ is reflexive while L_1 and ℓ_1 are not unless they are finite dimensional.

Linear Operators. They are linear maps $\{T : \mathbf{X} \to \mathbf{Y}\}$ that are continuous or bounded if $||Tx|| \leq C||x||$ and such operators form a Banach space with norm $||T|| = \sup_{||x|| \leq 1} ||Tx||$. If $\{T_1 : \mathbf{X} \to \mathbf{Y}\}$ and $\{T_2 : \mathbf{Y} \to \mathbf{Z}\}$ then $\{T_2T_1 : \mathbf{X} \to \mathbf{Z}\}$ with $||T_2T_1|| \leq ||T_2|| ||T_1||$. If $\{T : \mathbf{X} \to \mathbf{Y}\}$ then $\{T^* : \mathbf{Y}^* \to \mathbf{X}^*\}$ and $||T^*|| = ||T||$. $(T_2T_1)^* = T_1^*T_2^*$.

Baire category theorem. If X is complete metric space and $X = \bigcup_{j=1}^{\infty} C_j$ is a countable union of closed sets, then at least one C_j must have a nonempty interior, i.e. C_j contains an open ball $S(x, \epsilon)$ around some point for some $\epsilon > 0$.

Proof. Let C_1, C_2 be two closed sets such that their union $C_1 \cup C_2$ has a nonempty interior. Then at least one of them must have an interior. To see this, let $x \in C_1$ and $S(x, \delta)$ be not a subset of $C_1 \cup C_2$. There is then $x' \in S(x, \delta) \cap C_1^c$ and consequently $S(x', \delta') \subset C_1^c$ for some $\delta' > 0$. Since $S(x', \delta') \subset (C_1 \cup C_2) \cap C_1^c$ it must be contained in C_2 .

Let $X = \bigcup_{j=1}^{\infty} C_j$. If $X = \bigcup_{j=1}^{n} C_j$ for some finite *n* we are done (by induction on *n*). We can find nested balls $S(x_j, \delta_j) \downarrow$ with $\delta_j \to 0$. x_j is a Cauchy sequence with a limit $x \in \bigcap_j S(x_j, \delta_j)$. $x \notin \bigcup_{j=1}^{n} C_j$ implying $x \notin X = \bigcup_{j=1}^{\infty} C_j$.

Open mapping theorem. Let T be a bounded map fro \mathbf{X} onto \mathbf{Y} . Then the image TS of the unit ball S in \mathbf{X} has nonempty interior. Equivalently the image of any open set is open. Or the image of the init ball $\{x : ||x|| \leq 1\}$ in X contains a ball $\{y : ||y|| \leq \delta\}$ of some positive radius in \mathbf{Y} . If T is a bounded one to one and onto map from \mathbf{X} onto \mathbf{Y} , then T^{-1} is bounded.

Proof. Since T is onto $\bigcup_{k=1}^{\infty} TB(0;k) = \mathbf{Y}$. By Baire category theorem for some k_0 , $\overline{TB(0,k_0)}$ then contains an open set $B(y_0,\delta)$ around some x_0 . Set of points of the form $T(x_1 - x_2)$ with x_1, x_2 from $S(0, k_0)$ will then contain a Ball of radius 2δ around 0. Any point $y \in \mathbf{Y}$ with $\|y\| \leq 2\delta$ is arbitrarily close to Tx for some x in $B(0, 2k_0)$. By scaling any point in B(0,a) in Y is arbitrarily close to a point in the image of $B(0,\theta a)$ where $\theta = k_0 \delta^{-1}$. Let $y \in B(0,1) \subset \mathbf{Y}$. Find $x_1 \in B(0,\theta)$ such that $\|y - Tx_1\| < \frac{1}{2}$, Then if

 $y_1 = y - Tx_1, \|y_1\| \le \frac{1}{2}$. We can find x_2 with $\|x_2\| \le \frac{\theta}{2}$ such that $\|y_1 - Tx_2\| = \|y_2\| \le \frac{1}{4}$. Proceeding we have

$$y = Tx_1 + Tx_2 + \dots + Tx_n + y_n$$

with $||x_n|| \le \theta 2^{-(n-1)}$. Now $x = \sum_n x_n$ exists $||x|| \le 2\theta$ and Tx = y. The map T is open.

Uniform Boundedness Principle. Let $\{T_{\alpha}\}$ are bounded linear maps from Banach space **X** to Banach space **Y** such that $\sup_{\alpha} ||T_{\alpha}x|| = C(x) < \infty$ for every $x \in \mathbf{X}$. Then $C(x) \leq C||x||$ for some constant C, i.e. $\sup_{\alpha} ||T_{\alpha}x|| < \infty$

Proof. Let $C_n = \{x : C(x) \le n\}$. C_n is closed and $\bigcup_n C_n = \mathbf{X}$. Some C_n has interior. There is a an open ball $S(x_0, \delta)$ contained in some C_k and C_{2k} will contain $S(0, 2\delta)$. Since C(rx) = rC(x) for r > 0, it follows that $C(x) \le \frac{k}{\delta} ||x||$.

Closed Graph Theorem. If T maps $\mathbf{X} \to \mathbf{Y}$ the graph of T is the linear set of points $(x, Tx) \in \mathbf{X} \times \mathbf{Y}$ as x varies over \mathbf{X} . The closed graph theorem says that if the graph of T is a closed subspace of $\mathbf{X} \times \mathbf{Y}$ then T is necessarily bonded.

Proof. Let $\mathbf{Z} = \mathbf{X} \oplus \mathbf{Y}$ and $M = \{(x, Tx)\}$ the graph of T is a closed subspace of \mathbf{Z} . Then \mathbf{X} can have a new norm ||x|| + ||Tx|| under which it is again a Banach space. To check completeness means proving that if x_n and Tx_n are both Cauchy then the limit is (x, y) with y = Tx. This is precisely the graph being closed in $\mathbf{X} \oplus \mathbf{Y}$. The map $(x, Tx) \to x$ is clearly, bounded, one to one and onto. The inverse $x \to (x, Tx)$ is also then bounded.

Hahn-Banach Theorem. Given a linear functional $\Lambda(x)$ from a closed subspace $\mathbf{Y} \subset \mathbf{X}$ satisfying $|\Lambda(x)| \leq p(x)$ where p, defined on \mathbf{X} , satisfies $p \geq 0, p(ax) = |a|p(x)$ and $p(x+y) \leq p(x) + p(y), p$ can extended from \mathbf{Y} to \mathbf{X} satisfying $|\Lambda(x)| \leq p(x)$ for all $x \in X$.

Proof. Take $x_0 \notin \mathbf{Y}$. Let us define $\Lambda(x + cx_0) = \Lambda(x) + ca$ for some $a \in R$. Need to pick a such that $\Lambda(x) + ca \leq p(x + cx_0)$ for all $x \in \mathbf{Y}$ and $c \in R$.

$$\sup_{c \ge 0} \frac{\Lambda(x) - p(x - cx_0)}{c} \le a \le \inf_{c > 0} \frac{p(x + cx_0) - \Lambda(x)}{c}$$

For this to be possible we need for $c_1, c_2 > 0, x \in \mathbf{Y}$,

$$\frac{\Lambda(x) - p(x - c_1 x_0)}{c_1} \le \frac{p(x + c_2 x_0) - \Lambda(x)}{c_2}$$

or

$$c_2[\Lambda(x) - p(x - c_1 x_0)] \le c_1[p(x + c_2 x_0) - \Lambda(x)]$$
$$\Lambda(x) \le \frac{c_1 p(x + c_2 x_0) + c_2(x - c_1 x_0)}{c_1 + c_2}$$

follows from sub-additivity and homogeneity of p.

$$p(x) = p\left(\frac{c_1}{c_1 + c_2}x + \frac{c_1c_2}{c_1 + c_2}x_0 + \frac{c_2}{c_1 + c_2}x - \frac{c_1c_2}{c_1 + c_2}x_0\right)$$

$$\leq p\left(\frac{c_1}{c_1 + c_2}x + \frac{c_1c_2}{c_1 + c_2}x_0\right) + p\left(\frac{c_2}{c_1 + c_2}x - \frac{c_1c_2}{c_1 + c_2}x_0\right)$$

$$= \frac{c_1}{c_1 + c_2}p(x + c_2x_0) + \frac{c_2}{c_1 + c_2}p(x - c_2x_0)$$

Problem 4.1 Let x_1, \ldots, x_d be d linearly independent vectors in a Banach space X and V their linear span. Show that V is a closed subspace of X and there exists a complementary closed subspace $Y \subset X$ such that $X = Y \oplus V$. In any other decomposition of $X = Y \oplus W$ the dimension of W must be d.

A subspace M (not assumed to be closed) is of finite co-dimension d in a Banach space X if it is spanned by M and a finite number d of lvectors x_1, \ldots, x_d that are linearly independent modulo M.

Theorem. A subspace of finite co-dimension is necessarily closed and the co-dimension d is well defined. There is a complementary subspace V of dimension d such that $X = M \oplus V$.

Proof. The quotient space $\mathbf{X}/M = V$ is a vector space and its dimension d is well defined. Any $x \in \mathbf{X}$ can be written as a unique sum $x = y + \sum_{i=1}^{k} \Lambda_i(x) x_i$ with $y \in M$. $\mathbf{X} = M \oplus V$ with V being the span of $\{x_1, \ldots, x_d\}$. The graph of the map $x \to \{\Lambda_i(x)\}$ of $X \to R^d$ is closed. It is then bounded and $M = \bigcap_{i=1}^{k} \{x : \Lambda_i(x) = 0\}$ is closed.