
4. Banch Spaces.

A Banach Space is a vector space X with a norm ‖x‖ satisfying ‖cx‖ = |c|‖x‖ for real or
complex scalars c and ‖x + y‖ ≤ ‖x‖ + ‖y‖. In addition X is complete under the metric
d(x, y) = ‖x− y‖.

Examples. Lp, ℓp for 1 ≤ p ≤ ∞. C(X) the space of continuous functions on a compact
space X , or Cb(X) the space of bounded continuous functions on X . The norms being
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p for 1 ≤ p < ∞. On L∞ it is the essential supremum and
on ℓ∞ it is supn |an| with ‖f‖ = supx |f(x)| on the space of bounded continuous functions.

Linear Functions. They are linear maps Λ : X → R or X → C. Bounded or continuous
linear functionals are those that satisfy |Λ(x)| ≤ C‖x‖. With ‖Λ‖ = sup‖x‖≤1 |Λ(x) as
norm the set of linear functionals is a Banach space called the dual X∗. For p > 1 the dual
of Lp is Lq where q = p

p−1 with q = ∞ when p = 1. But the dual of L∞ is bigger than

L1. The second dual is [X∗]∗ and contains X. but could be bigger. If it is the same X is
said to be reflexive. For 1 < p < ∞, Lp is reflexive while L1 and ℓ1 are not unless they are
finite dimensional.

Linear Operators. They are linear maps {T : X → Y} that are continuous or bounded
if ‖Tx‖ ≤ C‖x‖ and such operators form a Banach space with norm ‖T‖ = sup‖x‖≤1 ‖Tx‖.
If {T1 : X → Y} and {T2 : Y → Z} then {T2T1 : X → Z} with ‖T2T1‖ ≤ ‖T2‖‖T1‖. If
{T : X → Y} then {T ∗ : Y∗ → X∗} and ‖T ∗‖ = ‖T‖. (T2T1)

∗ = T ∗
1 T

∗
2 .

Baire category theorem. If X is complete metric space and X = ∪∞
j=1Cj is a countable

union of closed sets, then at least one Cj must have a nonempty interior, i.e. Cj contains
an open ball S(x, ǫ) around some point for some ǫ > 0.

Proof. Let C1, C2 be two closed sets such that their union C1∪C2 has a nonempty interior.
Then at least one of them must have an interior. To see this, let x ∈ C1 and S(x, δ) be
not a subset of C1 ∪ C2. There is then x′ ∈ S(x, δ) ∩ Cc

1 and consequently S(x′, δ′) ⊂ Cc
1

for some δ′ > 0. Since S(x′, δ′) ⊂ (C1 ∪ C2) ∩ Cc
1 it must be contained in C2.

Let X = ∪∞
j=1Cj . If X = ∪n

j=1Cj for some finite n we are done (by induction on n).
We can find nested balls S(xj , δj) ↓ with δj → 0. xj is a Cauchy sequence with a limit
x ∈ ∩jS(xj , δj). x /∈ ∪n

j=1Cj implying x /∈ X = ∪∞
j=1Cj .

Open mapping theorem. Let T be a bounded map fro X onto Y. Then the image TS
of the unit ball S in X has nonempty interior. Equivalently the image of any open set is
open. Or the image of the init ball {x : ‖x‖ ≤ 1} in X contains a ball {y : ‖y‖ ≤ δ} of
some positive radius in Y. If T is a bounded one to one and onto map from X onto Y,
then T−1 is bounded.

Proof. Since T is onto ∪∞
k=1TB(0; k) = Y. By Baire category theorem for some k0,

TB(0, k0) then contains an open set B(y0, δ) around some x0. Set of points of the form
T (x1 − x2) with x1, x2 from S(0, k0) will then contain a Ball of radius 2δ around 0. Any
point y ∈ Y with ‖y‖ ≤ 2δ is arbitrarily close to Tx for some x in B(0, 2k0). By scaling
any point in B(0, a) in Y is arbitrarily close to a point in the image of B(0, θa) where
θ = k0δ

−1. Let y ∈ B(0, 1) ⊂ Y. Find x1 ∈ B(0, θ) such that ‖y − Tx1‖ < 1
2 , Then if
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y1 = y− Tx1, ‖y1‖ ≤ 1
2 . We can find x2 with ‖x2‖ ≤ θ

2 such that ‖y1 − Tx2‖ = ‖y2‖ ≤ 1
4 .

Proceeding we have
y = Tx1 + Tx2 + · · ·+ Txn + yn

with ‖xn‖ ≤ θ2−(n−1). Now x =
∑

n xn exists ‖x‖ ≤ 2θ and Tx = y. The map T is open.

Uniform Boundedness Principle. Let {Tα} are bounded linear maps from Banach
space X to Banach space Y such that supα ‖Tαx‖ = C(x) < ∞ for every x ∈ X. Then
C(x) ≤ C‖x‖ for some constant C, i.e. supα ‖Tα‖ < ∞

Proof. Let Cn = {x : C(x) ≤ n}. Cn is closed and ∪nCn = X. Some Cn has interior.
There is a an open ball S(x0, δ) contained in some Ck and C2k will contain S(0, 2δ). Since
C(rx) = rC(x) for r > 0, it follows that C(x) ≤ k

δ
‖x‖.

Closed Graph Theorem. If T maps X → Y the graph of T is the linear set of points
(x, Tx) ∈ X ×Y as x varies over X. The closed graph theorem says that if the graph of
T is a closed subspace of X×Y then T is necessarily bonded.

Proof. Let Z = X⊕Y and M = {(x, Tx)} the graph of T is a closed subspace of Z. Then
X can have a new norm ‖x‖ + ‖Tx‖ under which it is again a Banach space. To check
completeness means proving that if xn and Txn are both Cauchy then the limit is (x, y)
with y = Tx. This is precisely the graph being closed in X⊕Y. The map (x, Tx) → x is
clearly, bounded, one to one and onto. The inverse x → (x, Tx) is also then bounded.

Hahn-Banach Theorem. Given a linear functional Λ(x) from a closed subspace Y ⊂ X

satisfying |Λ(x)| ≤ p(x) where p, defined on X, satisfies p ≥ 0, p(ax) = |a|p(x) and
p(x+y) ≤ p(x)+p(y), p can extended from Y to X satisfying |Λ(x)| ≤ p(x) for all x ∈ X .

Proof. Take x0 /∈ Y. Let us define Λ(x+ cx0) = Λ(x) + ca for some a ∈ R. Need to pick
a such that Λ(x) + ca ≤ p(x+ cx0) for all x ∈ Y and c ∈ R.

sup
c≥0

Λ(x)− p(x− cx0)

c
≤ a ≤ inf

c>0

p(x+ cx0)− Λ(x)

c

For this to be possible we need for c1, c2 > 0, x ∈ Y,

Λ(x)− p(x− c1x0)

c1
≤

p(x+ c2x0)− Λ(x)

c2

or
c2[Λ(x)− p(x− c1x0)] ≤ c1[p(x+ c2x0)− Λ(x)]

Λ(x) ≤
c1p(x+ c2x0) + c2(x− c1x0)

c1 + c2

follows from sub-additivity and homogeneity of p.

p(x) = p(
c1

c1 + c2
x+

c1c2
c1 + c2

x0 +
c2

c1 + c2
x−

c1c2
c1 + c2

x0)

≤ p(
c1

c1 + c2
x+

c1c2
c1 + c2

x0) + p(
c2

c1 + c2
x−

c1c2
c1 + c2

x0)

=
c1

c1 + c2
p(x+ c2x0) +

c2
c1 + c2

p(x− c2x0)
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Problem 4.1 Let x1, . . . , xd be d linearly independent vectors in a Banach space X and V
their linear span. Show that V is a closed subspace of X and there exists a complementary
closed subspace Y ⊂ X such that X = Y ⊕ V . In any other decomposition of X = Y ⊕W
the dimension of W must be d.

A subspace M (not assumed to be closed) is of finite co-dimension d in a Banach space
X if it is spanned by M and a finite number d of lvectors x1, . . . , xd that are linearly
independent modulo M .

Theorem. A subspace of finite co-dimension is necessarily closed and the co-dimension d
is well defined. There is a complementary subspace V of dimension d such thatX = M⊕V .

Proof. The quotient space X/M = V is a vector space and its dimension d is well defined.

Any x ∈ X can be written as a unique sum x = y+
∑k

i=1 Λi(x)xi with y ∈ M . X = M⊕V
with V being the span of {x1, . . . , xd}. The graph of the map x → {Λi(x)} of X → Rd is
closed. It is then bounded and M = ∩k

i=1{x : Λi(x) = 0} is closed.
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