4. Banch Spaces.

A Banach Space is a vector space \mathbf{X} with a norm $\|x\|$ satisfying $\|c x\|=|c|\|x\|$ for real or complex scalars c and $\|x+y\| \leq\|x\|+\|y\|$. In addition \mathbf{X} is complete under the metric $d(x, y)=\|x-y\|$.

Examples. L_{p}, ℓ_{p} for $1 \leq p \leq \infty . C(X)$ the space of continuous functions on a compact space X, or $C_{b}(X)$ the space of bounded continuous functions on X. The norms being $\left[\int|f(x)|^{p} d \mu\right]^{\frac{1}{p}}$ or $\left[\sum_{n=0}^{\infty}\left|a_{n}\right|^{p}\right]^{\frac{1}{p}}$ for $1 \leq p<\infty$. On L_{∞} it is the essential supremum and on ℓ_{∞} it is $\sup _{n}\left|a_{n}\right|$ with $\|f\|=\sup _{x}|f(x)|$ on the space of bounded continuous functions.

Linear Functions. They are linear maps $\Lambda: \mathbf{X} \rightarrow R$ or $\mathbf{X} \rightarrow C$. Bounded or continuous linear functionals are those that satisfy $|\Lambda(x)| \leq C\|x\|$. With $\|\Lambda\|=\sup _{\|x\| \leq 1} \mid \Lambda(x)$ as norm the set of linear functionals is a Banach space called the dual \mathbf{X}^{*}. For $p>1$ the dual of L_{p} is L_{q} where $q=\frac{p}{p-1}$ with $q=\infty$ when $p=1$. But the dual of L_{∞} is bigger than L_{1}. The second dual is $\left[\mathbf{X}^{*}\right]^{*}$ and contains \mathbf{X}. but could be bigger. If it is the same \mathbf{X} is said to be reflexive. For $1<p<\infty, L_{p}$ is reflexive while L_{1} and ℓ_{1} are not unless they are finite dimensional.

Linear Operators. They are linear maps $\{T: \mathbf{X} \rightarrow \mathbf{Y}\}$ that are continuous or bounded if $\|T x\| \leq C\|x\|$ and such operators form a Banach space with norm $\|T\|=\sup _{\|x\|<1}\|T x\|$. If $\left\{T_{1}: \mathbf{X} \rightarrow \mathbf{Y}\right\}$ and $\left\{T_{2}: \mathbf{Y} \rightarrow \mathbf{Z}\right\}$ then $\left\{T_{2} T_{1}: \mathbf{X} \rightarrow \mathbf{Z}\right\}$ with $\left\|T_{2} T_{1}\right\| \leq\left\|T_{2}\right\|\left\|T_{1}\right\|$. If $\{T: \mathbf{X} \rightarrow \mathbf{Y}\}$ then $\left\{T^{*}: \mathbf{Y}^{*} \rightarrow \mathbf{X}^{*}\right\}$ and $\left\|T^{*}\right\|=\|T\| .\left(T_{2} T_{1}\right)^{*}=T_{1}^{*} T_{2}^{*}$.
Baire category theorem. If X is complete metric space and $X=\cup_{j=1}^{\infty} C_{j}$ is a countable union of closed sets, then at least one C_{j} must have a nonempty interior, i.e. C_{j} contains an open ball $S(x, \epsilon)$ around some point for some $\epsilon>0$.

Proof. Let C_{1}, C_{2} be two closed sets such that their union $C_{1} \cup C_{2}$ has a nonempty interior. Then at least one of them must have an interior. To see this, let $x \in C_{1}$ and $S(x, \delta)$ be not a subset of $C_{1} \cup C_{2}$. There is then $x^{\prime} \in S(x, \delta) \cap C_{1}^{c}$ and consequently $S\left(x^{\prime}, \delta^{\prime}\right) \subset C_{1}^{c}$ for some $\delta^{\prime}>0$. Since $S\left(x^{\prime}, \delta^{\prime}\right) \subset\left(C_{1} \cup C_{2}\right) \cap C_{1}^{c}$ it must be contained in C_{2}.

Let $X=\cup_{j=1}^{\infty} C_{j}$. If $X=\cup_{j=1}^{n} C_{j}$ for some finite n we are done (by induction on n). We can find nested balls $S\left(x_{j}, \delta_{j}\right) \downarrow$ with $\delta_{j} \rightarrow 0 . x_{j}$ is a Cauchy sequence with a limit $x \in \cap_{j} S\left(x_{j}, \delta_{j}\right) . x \notin \cup_{j=1}^{n} C_{j}$ implying $x \notin X=\cup_{j=1}^{\infty} C_{j}$.
Open mapping theorem. Let T be a bounded map fro \mathbf{X} onto \mathbf{Y}. Then the image $T S$ of the unit ball S in \mathbf{X} has nonempty interior. Equivalently the image of any open set is open. Or the image of the init ball $\{x:\|x\| \leq 1\}$ in X contains a ball $\{y:\|y\| \leq \delta\}$ of some positive radius in \mathbf{Y}. If T is a bounded one to one and onto map from \mathbf{X} onto \mathbf{Y}, then T^{-1} is bounded.

Proof. Since T is onto $\cup_{k=1}^{\infty} T B(0 ; k)=\mathbf{Y}$. By Baire category theorem for some k_{0}, $\overline{T B\left(0, k_{0}\right)}$ then contains an open set $B\left(y_{0}, \delta\right)$ around some x_{0}. Set of points of the form $T\left(x_{1}-x_{2}\right)$ with x_{1}, x_{2} from $S\left(0, k_{0}\right)$ will then contain a Ball of radius 2δ around 0 . Any point $y \in \mathbf{Y}$ with $\|y\| \leq 2 \delta$ is arbitrarily close to $T x$ for some x in $B\left(0,2 k_{0}\right)$. By scaling any point in $B(0, a)$ in Y is arbitrarily close to a point in the image of $B(0, \theta a)$ where $\theta=k_{0} \delta^{-1}$. Let $y \in B(0,1) \subset \mathbf{Y}$. Find $x_{1} \in B(0, \theta)$ such that $\left\|y-T x_{1}\right\|<\frac{1}{2}$, Then if
$y_{1}=y-T x_{1},\left\|y_{1}\right\| \leq \frac{1}{2}$. We can find x_{2} with $\left\|x_{2}\right\| \leq \frac{\theta}{2}$ such that $\left\|y_{1}-T x_{2}\right\|=\left\|y_{2}\right\| \leq \frac{1}{4}$. Proceeding we have

$$
y=T x_{1}+T x_{2}+\cdots+T x_{n}+y_{n}
$$

with $\left\|x_{n}\right\| \leq \theta 2^{-(n-1)}$. Now $x=\sum_{n} x_{n}$ exists $\|x\| \leq 2 \theta$ and $T x=y$. The map T is open.
Uniform Boundedness Principle. Let $\left\{T_{\alpha}\right\}$ are bounded linear maps from Banach space \mathbf{X} to Banach space \mathbf{Y} such that $\sup _{\alpha}\left\|T_{\alpha} x\right\|=C(x)<\infty$ for every $x \in \mathbf{X}$. Then $C(x) \leq C\|x\|$ for some constant C, i.e. $\sup _{\alpha}\left\|T_{\alpha}\right\|<\infty$
Proof. Let $C_{n}=\{x: C(x) \leq n\} . C_{n}$ is closed and $\cup_{n} C_{n}=\mathbf{X}$. Some C_{n} has interior. There is a an open ball $S\left(x_{0}, \delta\right)$ contained in some C_{k} and $C_{2 k}$ will contain $S(0,2 \delta)$. Since $C(r x)=r C(x)$ for $r>0$, it follows that $C(x) \leq \frac{k}{\delta}\|x\|$.
Closed Graph Theorem. If T maps $\mathbf{X} \rightarrow \mathbf{Y}$ the graph of T is the linear set of points $(x, T x) \in \mathbf{X} \times \mathbf{Y}$ as x varies over \mathbf{X}. The closed graph theorem says that if the graph of T is a closed subspace of $\mathbf{X} \times \mathbf{Y}$ then T is necessarily bonded.
Proof. Let $\mathbf{Z}=\mathbf{X} \oplus \mathbf{Y}$ and $M=\{(x, T x)\}$ the graph of T is a closed subspace of \mathbf{Z}. Then \mathbf{X} can have a new norm $\|x\|+\|T x\|$ under which it is again a Banach space. To check completeness means proving that if x_{n} and $T x_{n}$ are both Cauchy then the limit is (x, y) with $y=T x$. This is precisely the graph being closed in $\mathbf{X} \oplus \mathbf{Y}$. The map $(x, T x) \rightarrow x$ is clearly, bounded, one to one and onto. The inverse $x \rightarrow(x, T x)$ is also then bounded.

Hahn-Banach Theorem. Given a linear functional $\Lambda(x)$ from a closed subspace $\mathbf{Y} \subset \mathbf{X}$ satisfying $|\Lambda(x)| \leq p(x)$ where p, defined on \mathbf{X}, satisfies $p \geq 0, p(a x)=|a| p(x)$ and $p(x+y) \leq p(x)+p(y), p$ can extended from \mathbf{Y} to \mathbf{X} satisfying $|\Lambda(x)| \leq p(x)$ for all $x \in X$.
Proof. Take $x_{0} \notin \mathbf{Y}$. Let us define $\Lambda\left(x+c x_{0}\right)=\Lambda(x)+c a$ for some $a \in R$. Need to pick a such that $\Lambda(x)+c a \leq p\left(x+c x_{0}\right)$ for all $x \in \mathbf{Y}$ and $c \in R$.

$$
\sup _{c \geq 0} \frac{\Lambda(x)-p\left(x-c x_{0}\right)}{c} \leq a \leq \inf _{c>0} \frac{p\left(x+c x_{0}\right)-\Lambda(x)}{c}
$$

For this to be possible we need for $c_{1}, c_{2}>0, x \in \mathbf{Y}$,

$$
\frac{\Lambda(x)-p\left(x-c_{1} x_{0}\right)}{c_{1}} \leq \frac{p\left(x+c_{2} x_{0}\right)-\Lambda(x)}{c_{2}}
$$

or

$$
\begin{gathered}
c_{2}\left[\Lambda(x)-p\left(x-c_{1} x_{0}\right)\right] \leq c_{1}\left[p\left(x+c_{2} x_{0}\right)-\Lambda(x)\right] \\
\Lambda(x) \leq \frac{c_{1} p\left(x+c_{2} x_{0}\right)+c_{2}\left(x-c_{1} x_{0}\right)}{c_{1}+c_{2}}
\end{gathered}
$$

follows from sub-additivity and homogeneity of p.

$$
\begin{aligned}
p(x) & =p\left(\frac{c_{1}}{c_{1}+c_{2}} x+\frac{c_{1} c_{2}}{c_{1}+c_{2}} x_{0}+\frac{c_{2}}{c_{1}+c_{2}} x-\frac{c_{1} c_{2}}{c_{1}+c_{2}} x_{0}\right) \\
& \leq p\left(\frac{c_{1}}{c_{1}+c_{2}} x+\frac{c_{1} c_{2}}{c_{1}+c_{2}} x_{0}\right)+p\left(\frac{c_{2}}{c_{1}+c_{2}} x-\frac{c_{1} c_{2}}{c_{1}+c_{2}} x_{0}\right) \\
& =\frac{c_{1}}{c_{1}+c_{2}} p\left(x+c_{2} x_{0}\right)+\frac{c_{2}}{c_{1}+c_{2}} p\left(x-c_{2} x_{0}\right)
\end{aligned}
$$

Problem 4.1 Let x_{1}, \ldots, x_{d} be d linearly independent vectors in a Banach space X and V their linear span. Show that V is a closed subspace of X and there exists a complementary closed subspace $Y \subset X$ such that $X=Y \oplus V$. In any other decomposition of $X=Y \oplus W$ the dimension of W must be d.

A subspace M (not assumed to be closed) is of finite co-dimension d in a Banach space X if it is spanned by M and a finite number d of lvectors x_{1}, \ldots, x_{d} that are linearly independent modulo M.

Theorem. A subspace of finite co-dimension is necessarily closed and the co-dimension d is well defined. There is a complementary subspace V of dimension d such that $X=M \oplus V$.

Proof. The quotient space $\mathbf{X} / M=V$ is a vector space and its dimension d is well defined. Any $x \in \mathbf{X}$ can be written as a unique sum $x=y+\sum_{i=1}^{k} \Lambda_{i}(x) x_{i}$ with $y \in M . \mathbf{X}=M \oplus V$ with V being the span of $\left\{x_{1}, \ldots, x_{d}\right\}$. The graph of the map $x \rightarrow\left\{\Lambda_{i}(x)\right\}$ of $X \rightarrow R^{d}$ is closed. It is then bounded and $M=\cap_{i=1}^{k}\left\{x: \Lambda_{i}(x)=0\right\}$ is closed.

